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LETTER TO THE EDITOR 

Self-avoiding walks and real polymer chains 
C Dombt, A J Barretti and Melvin Lax$ 
?Department of Physics, King’s College, London WC2R 2LS, UK 
SWeimann Institute, Rehovot, Israel 

Received 19 April 1973 

Abstract. The model of Domb and Joyce enables a continuous transition to be effected 
between a random and self-avoiding walk on a lattice. By combining a virial expan- 
sion with exact enumerations for this model, it has been possible to derive numerical 
estimates of the expansion factor ct2 = (R2, ) /N for different values of N and w (the 
excluded volume parameter) for different three-dimensional lattices. The results have 
been used to test the two-parameter approximation, and the closed form expressions 
of Flory, Flory and Fisk, and Alexandrowicz and Kurata. 

The model of a self-avoiding walk (SAW) on a lattice has been widely used as a con- 
venient representation of a polymer molecule in which the excluded volume is taken 
into account in a realistic manner. Using methods analogous to those which have been 
successful for the Ising model, a number of important statistical and geometrical 
properties of SAW’S have been conjectured; these include the total number of walks of 
N steps, the number of ring closures, the mean square end-to-end length, the mean 
square radius of gyration, the probability distribution of end-to-end length, and the 
correlation between pairs of points on the walk. (For a general review see Domb 
1969.) Recently the new renormalization group technique has been applied by de 
Gennes (1972) to SAW’S and the results obtained for the exponents fit in very well with 
the above conjectures. Following the general expansion scheme of Wilson (1972) for a 
ferromagnetic model in spin dimension n, de Gennes describes a SAW as a ferro- 
magnetic model in zero dimensions. 

However, although the above calculations have been useful in a general way for 
determining the exponents which characterize the various properties, they have not 
been able to provide numerical estimates for real polymer chains which are not 
constrained to a lattice, and in which the magnitude of the excluded volume can vary 
from a large value down to zero. A more acceptable model is the gaussian chain of N 
segments joining ( N f l )  identical beads with complete flexibility at each bead. The 
beads interact by means of an intermolecular potential which is incorporated into a 
pseudopotential yS(Rij). Here Rtj  = R ,  - R j ,  R ,  and R j  being the positions in space of 
the (i+ 1)th and ( j +  1)th beads; 6(R) is the three-dimensional Dirac 6 function; and y 
is a variable which characterizes the excluded volume. 

For this model following the development initiated by Zimm in 1946 a number of 
terms of a ‘virial expansion’ have been calculated exactly for the expansion factor due 
to the excluded volume: 
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where 
z = - ( 3 / 2 ~ b ~ ) ” ~ y N ~ ’ ~  

and b2 is the mean square length of each segment of the chain (for values of A, ,  A, ,  A 3  
see Yamakawa 1971). This expansion is exact only in the limit N + 00, y -to, yN1” 
finite, which we shall refer to as the ‘two-parameter function’. Also, with only 3 terms 
of the series available, its practical range of application is very limited. An alternative 
approach to  this model was provided by Flory in 1949 who obtained a closed form 
expression for a-, 

L 

Flory’s formula does not give the correct expansion (1) for sinall z and therefore there 
have been a number of subsequent attempts to  modify the formula so as to remedy 
this defect (see eg Alexandrowicz and Accad 1973). Also Flory’s argument is ‘mean 
field’ in character (Fisher 1969); surprisingly it yields the correct exponent whereas the 
same type of approach in the Ising problem yields incorrect exponents (Burley 1972). 
However, it would be useful if formulae such as (3) could be tested in the same way as 
the Ising closed-form solutions. 

For this purpose we suggest that the generalized model introduced by Domb and 
Joyce (1972) can be used, since it applies equally to lattice and continuum models. For 
a lattice walk of N steps an interaction w6, is introduced between every pair of points 
of any configuration of the walk, i a n d j  being the lattice sites occupied by the ith and 
j t h  points of the walk. Thus w = 0 corresponds to a random walk, w = - 1  to a 
SAW; w plays a similar role to y in (2). A perturbation series can be developed for 
finite N of the form 

(41 
but the k, are functions of N whose leading term is of order Nria  (it is not certain 
whether or not there are In N factors for r > 3 and this point is currently under 
investigation; in the present work we shall use only the first three terms). Thus if we 
take only the leading term of k, into account we obtain a two-parameter function for 
this model. Domb and Joyce showed how to calculate the k, in terms of the Green 
function for returns to the origin in a random walk on the lattice, 

x 2 ( w )  = 1 +kl~v+kzw2+/i31v3+ . . . 

R(x) = e(x) +f(x)(l - ~ ) l , ’ ~  

e(s) = eo +e,(l -x) +e,( 1 -s), + . . . 
f(.) = fo +SI( 1 -x) +f,( 1 + . . . 

where 

R(x)  varies from one lattice to another, and can also be chosen appropriately to apply 
to the gaussian continuum model. 

The aim of the present letter is to describe two recent developments which taken 
together have enabled the closed formulae to  be tested. The first (CD and AJB) is the 
calculation of the coefficients kl ,  kz  and k3 in (4) as functions of N for a variety of 
three-dimensional lattices; for each lattice these calculations provide reliable estimates 
of 2 ( w )  near w = 0. The second (CD and ML) is a series of exact enumerations of 
a-’(w) for small values of N following the pattern of SAW enumerations. I t  was found 
that for w = -0.5 to w = - 1.0 asymptotic estimates could be made for 2 ( w )  in the 
same way as for SAW’S (w = - 1.0). One small but important modification to the 
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extrapolation formulae used by Domb (1963) is the assumption of a Darboux form: 

2 ( w )  = Nl’ j (A(w)  + B(W)/N). (7) 

Refined analysis has shown that this form provides a good fit to Ising coefficients and 
SAW’S (see eg Domb 1970, Sykes et al 1972). The assumption that there is no change 
in analytic form on passing through w = -1 is in accord with the Griffiths (1970) 
‘smoothness postulate’. Detailed descriptions of the above developments will be given 
in separate publications. 

Having good estimates for a given lattice of x2(w) near IY = 0 and from w = -0.5 
to - 1 a 0  it is an easy matter to interpolate and cover the whole range from tv = 0 to 
U’ = - 1.0. Typical results for the simple cubic lattice are shown in figure 1. From 

-W 

Figure 1. Expansion factor a2 for a chain on the sc lattice. 
T (  = -N1”3v) would be horizontal in the two-parameter approximation. 

Lines of constant 

these curves it is possible to assess the validity for this lattice of the approximation 
which replaces the true tc2 by the two-parameter function. If the approximation were 
correct the lines of constant q( = - w W ’ ~ )  would be horizontal. In fact it will be seen 
that the deviations from horizontal are relatively small. 

We may observe that the simple formula ( 7 )  is no longer valid near I.V = 0 and 
enumerations for far higher values of N would be needed in this region to obtain a 
valid asymptotic estimate. Perhaps this partially resolves the difference between one 
of the present authors (CD) and P J Flory on the value of N required to achieve 
asymptotic behaviour (see Faraday Society Discussion No 49 1970, p 76). 

To make use of the data in figure 1 as a check on formulae like (3) we quote the 
result (CD and AJB) that in the expansion (4) only a single variablefowN1’2 enters in 
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Figure 2. Comparison of the present estimate of the two-parameter function @BL) 
with closed-form approximations F1 = Flory (1949), Fz = Flow and Fisk (1966), 
A-K 5 Alexandrowicz (1968) and Kurata (1968). (U) t = 0-12; (b) z = 0-250. 



L86 Letter to the Editor 

the two-parameter function. Thus with the exception of a scale .factor f o  the two- 
parameter function is the same for all lattices and for  the gaussiari continuum model. 
The two-parameter function can thus be regarded as a ‘long range’ property indepen- 
dent of lattice structure. Not surprisingly f o  is inversely proportional to the volume 
of a unit cell of the lattice. By comparing data for different lattices and extracting 
the term independent of lattice structure it should be possible to obtain a reliable 
estimate of the two-parameter function. However, even a single lattice is capable of 
providing a preliminary estimate and the simple-cubic lattice data of figure 1 have been 
used to  furnish the estimate of the two-parameter function labelled DBL in figure 2. 

Figure 2(a) covers the range of small z (0-12) and figure 2(b) the range of large z 
(0-250). F, corresponds to the original Flory formula (3), F, to the modification of 
Flory and Fisk (1966) which replaced the right-hand side of the equation by 92/32/14 
so as to make the first term of the expansion (1) more nearly correct. A-K refers to  the 
formula advanced independently by Alexandrowicz (1968) and Kurata (1968) 

U5 4 3  8 4 

5 3 1 5 3  
= -z* 

I t  will be seen that the original Flory formula comes closest to our own estimate. 
The error for small z is rapidly corrected and in the range 3 < z < 10 the two curves 
are very close. However, for larger z deviations become more apparent. By contrast 
although both F2 and A-K start correctly they rapidly deviate in opposite directions 
from our estimate and this deviation increases as z increases. 

Finally to  obtain an independent assessment of our estimate we have compared our 
predictions with the Monte Carlo enumerations of Alexandrowicz and Accad (1973). 
These are shown in figure 3, and we can reasonably claim a modest degree of agreement. 

4.0 - 

N 

0 8.0 16.0 24.0 32.0 
v 

Figure 3. Comparison of the present estimate with Monte Carlo data of Alexan- 
drowicz and Accad (1973). Values of N are: 0 4096; 0 2048; A 1024; A 512; 
0 256. 
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We are grateful to Dr  Z Alexandrowicz for making available to us detailed numerical 
values of his Monte Carlo enumerations. One of us (CD) is indebted to Professor 
S F Edwards for encouraging and helpful discussion. 

This research has been supported (in part) by the US Department of the Army 
through its European Research Office. 
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